When you configure and enable routing on the BVI, packets that come in on a routed interface, which are destined for a host on a segment in a bridge group, are routed to the BVI. From the BVI, the packet is forwarded to the bridging engine, which forwards it through a bridged interface. This is forwarded based on the destination MAC address. Similarly, packets that come in on a bridged interface, but are destined for a host on a routed network, first go to the BVI. Next, the BVI forwards the packets to the routing engine before it sends them out of the routed interface. On a single physical interface, the IRB can be created with two VLAN sub-interfaces (802.1Q tagging); one VLAN sub-interface has an IP address that is used for routing, and the other VLAN sub-interface bridges between the sub-interface used for routing and the other physical interface on the router.
Since the BVI represents a bridge group as a routed interface, it must be configured only with Layer 3 (L3) characteristics, such as network layer addresses. Similarly, the interfaces configured for bridging a protocol must not be configured with any L3 characteristics.
Standard design:
As the frame flows through the switch, the VLAN header is applied because the connection is a trunk link. There may be several VLANs communicating across the trunk.
The router terminates the VLAN layer and the MAC layer. It examines the destination IP address and forwards the frame appropriately. In this case, the IP frame is to be forwarded out of the port toward PC B. This is also a VLAN trunk and so a VLAN header is applied.
Although the VLAN connecting Switch 2 to the router can be called the same number as the VLAN connecting Switch 1 to the router, it is actually not the same VLAN. The original VLAN header is removed when the frame arrives at the router. A new header may be applied as the frame exits the router. This new header may include the same VLAN number that was used in the VLAN header that was stripped when the frame arrived. This is demonstrated by the fact that the IP frame moved through the router without a VLAN header attached, and was forwarded based on the contents of the IP destination address field, and not on a VLAN ID field.
Because the two VLAN trunks sit on opposite sides of the router, they must be different IP subnets.
In order for the two PCs to have the same subnet address, the router would have to be bridging IP on its interfaces. However, having the devices on VLANs share a common subnet does not mean that they are on the same VLAN.
IRB:
Sample config:
Current configuration: ! version 12.0 service timestamps debug uptime service timestamps log uptime no service password-encryption ! hostname R1 ! ! ip subnet-zero no ip domain-lookup bridge irb !-- This command enables the IRB feature on this router.! interface Ethernet0 no ip address no ip directed-broadcast bridge-group 1 !-- The interface E0 is in bridge-group 1.! Interface Ethernet1 no ip address no ip directed-broadcast bridge-group 1 !-- The interface E1 is in bridge-group 1.! Interface Serial0 ip address 10.10.20.1 255.255.255.0 no ip directed-broadcast no ip mroute-cache no fair-queue ! interface Serial1 no ip address no ip directed-broadcast shutdown ! interface BVI1 ip address 10.10.10.1 255.255.255.0 !-- An ip address is assigned to the logical BVI for routing!-- IP between bridged interfaces and routed interfaces.no ip directed-broadcast ! ip classless ip route 10.10.30.0 255.255.255.0 10.10.20.2 ! bridge 1 protocol ieee !-- This command enables the bridging on this router.bridge 1 route ip !-- This command enable bridging as well routing for IP protocol.! line con 0 transport input none line aux 0 line vty 0 4 ! end
No comments:
Post a Comment